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1. Introduction

Convexity plays a central role in the analysis of mathematical

programming problems. Numerous generalizations of convex functions have

been derived which proved to be useful for extending optimality conditions,

previously restricted to convex programs, to larger classes of optimization

problems. Some global convergence results of nonlinear prograimning

algorithms can be also extended from convex programs to problems

involving certain generalized convex functions. For a review of

generalized convexity and its application to mathematical programming

see [4, 16M, 20, 22, 23]. In this work we shall investigate twice

continuously differentiable pseudoconvex functions.

Definition 1. A real differentiable function f, defined on an op

convex subset C of Rn  is called pseudoconvex Pcx) if

(x' - x)T Vf(x) 0 =>f(x ) f(x, (1.1)

for all x C C, x' C C. It is called strictly pseudoconvex (strictly

pCx) if

(x, - x)T Vf(x) ,0 f(x') > f(x) (1.2)

for all x E C, x' r C, x i x'.

Pcx and strictly pcx functions generalize convex and strictly

convex functions, respectively. It is well known [4] that every local

minimum of a pcx function is global and the Kuhn-Tucker necessary

conditions are also sufficient for a local (global) minimum in a
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nonlinear program whose objective function is pcx and the constraints

are defined by quasiconvex functions. Furthermore, if the objective

function is strictly pcx, there exists at most one global minimum.

Global convergence to a minimum by certain numerical algorithms,

such as the conjugate gradient method, is ensured in case of pcx

functions.

Characterizations of twice differentiable pseudoconvex functions

jf, in terms of extended Hessians, defined by

H(x; r(x)) 2f(x) + r(x) 7f(x) Vf(x)T

were studied in [2, 4, 5, 6, 21]. In Section 2 of this paper we

relate the criteria used in the characterizations to each other and

derive additional results of this type. A related topic, discussed

in Section 3 is the characterization of pcx functions in terms of

bordered determinants. First results in this direction were presented

in [1, 10, 12). Finally, in Section 4, we focus on quadratic functions.

A characterization in terms of an extended Hessian [27) is used to

develop a necessary and sufficient condition for (strictly) pcx

quadratic functions in terms of bordered determinants.

2. Pseudoconvexity in terms of extended Hessians

Throughout this paper we shall alwayb refer to f as a twice

continuously differentiable real function, defined on an open convex

subset C of Rn . Vectors are considered to be column vectors.
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T
Accordingly, if x is a vector, its transpose is denoted by 

x T

Let Z denote the set of normalized direction vectors in Rn , that is

Z [z E Rn-lzI ln.1"

Proposition 1. If f is pseudoconvex on C then there exists a

function p : CxZ -- R such that

zT[V(f(x) + p(x,z) 7f(x) 7f(x)T]z > 0 (2.1)

for all x E C, z E Z.

Proof. First we note that for a pcx function f we have zT Vf(x)z > 0

if ZT Vf(x) 0 (see Lemma 6.2 in [2]). Consider now

J 0 if zT17f(x) =a

P (xz) (2.2)
0O~x 'z  : T V2f(x)z i0

[z T 'Vf~x] if z1fx 2 .

It follows that p=%O satisfies (2.1) as asserted. fl

Note that if P is any other function satisfying (2.1),

then

P(x,z) > Po0(X,z)

for all x E C, z E Z such that zTVf(x) v.0. Define now



r(x) = sup(p(x,z) z E z) (2i3)

If rO(x) = supP 0 (x,z):z E Z) is finite on C, then there exists

a function r, depending on x, such that

H(x; r(x)) = V2f(x) + r(x) Vf(x) vf(x)T (2.4)

is positive semidefinite on C, and conversely. Furthermore, f

is ro-convex on C (2, 4, 17, 201 if and only if

= sup(r o (x),x E C)

is finite. For many pcx functions r0 is unbounded on C, as in the

case of quadratic functions on maximal sets of pseudoconvexity [27].

Example 1 below demonstrates a case of a pseudoconvex function for

which there exists no finite r (x) for any x E C. Hence, positive
0

semidefiniteness of the extended Hessian given by (2.4) is not a

necessary condition for pseudoconvexity, as it was erroneously stated

in (21]. Consequently, the characterization of pcx functions in [6)

applies only to those functions where H(x; r(x)) is positive semi-

definite for some r(x).

Example 1. Let f(x) = x2/x I on C = (x E R2:x >

Then f is pcx on C [16). For any x C C and z € Z such that

z I 0, z2/Z 1 € x2/x I we have



I.I

PO(x,z) - 2[ (z 2 z) - (x2/Xl
1  (2.5)

Since O0 (x,z) -+ + - as (z2/zI ) \j (x 2/xl), it follows that

r (x) = + 0. II

The condition stated in Proposition 1 is necessary for pseudo-

convexity. However, it is not sufficient, as can be seen in the

following example.

Example 2. Let f(x) (x)3 , C R. Here

0 if X= 0

(x)-3  
if x o.

Clearly, inequality (2.1) holds, but f is not pcx.

We observe that in the last example p is unbounded on

intervals containing the origin. However, p0  is (locally) bounded

on open intervals that do not contain the origin. On those intervals

f happens to be pcx. This example motivates our next result. For

x G C and z E Z, let

T(xz) (t G R:x + tz E C)

Then we have
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Proposition 2. If there exists a p CxZ -4 R satisfying (2.1) such

that for every x C C, z E Z and every compact interval I C T(x,z)

the number

w(I) = sup(p(x + tz,z):t E I) (2.6)

is finite, then f is pseudoconvex on C.

Proof. Define h(t) = f(x + tz) for t C I. From (2.1) we have

h"(t) + p(x + tz,z)(h'(t))2 > 0

for t E I. By (2.6) o(I) < + - and it follows that

h"(t) + w(I) (h'(t))2 > 0

for all t C I. Hence, h is w(I)-convex (in the sense of r-convexity)

on I which implies psuedoconvexity. Therefore, h is pcx on T(x,z),

for all x C C and z C Z. This implies pseudoconvexity of f on C.

Proposition 2 shows that f is pcx on C if h is w(i)-convex

on all compact intervals I in T(x,z). We shall see in the sequel

that this condition is also necessary, provided certain "pathological"

functions (an example of which is given below), are excluded.
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i Example 3. Let

- () [2 + sin(l/)] dt if x < 0

0 

-

f(x) 0 if x = 0

x )4
r (g) [2 + sin(I/9)] d if x > 0

This function is strictly pcx on R. To see this, consider

-(x) [2 + sin(l/x)] if x < 0

f, (x) 0 if x = 0

(x) 4 (2 + sin(l/x)] if x > 0

and f'(x) > 0 for x > 0, f'(0) = 0, and f'(x) < 0 for x < 0.

However, by computing the second derivative

L

_(x)2 (4x[2 + sin(l/x)j - cos 'l/x)} if x < 0

f"(x) 0 if x = 0

(X)2  4x[2 + sin(l/x] - cos(l/x)) if X > 0

we can see that f" changes sign in every neighborhood of the origin,

thus f is not convex. Take now x - 0 and z = 1. Then,

x + tz = t and for t > 0 we have

7



p (t,l) -f" (t) - f4t[2 sin(l/t)] - cosl/)}

'I'(t)]2  (t)' [2 + sin(1/t)]2

For k = 1,2,..., let tk I/(2k7r). Thus

k,) = I- 8 tk - ()5) 5
PO(t 8(tk  8k =

and Po(tk, l) -1 + o as k I . It follows that the sufficient condition

of Proposition 2 is not necessary for this pcx function.

In the next proposition we restrict the discussion to functions

for which the second order neighborhood sufficient conditions of

optimality [4,13] are also necessary. First we need

Definition 2. A twice differentiable function h:R -i R is said to

be regular on an open interval (a,b) if the following statements

are equivalent:

(i) h(t) has a local minimum at t C (a,b)

(ii) h'(t*) = 0 and h"(t) > 0 in some neighborhood N(t*) -(a,b).

The function f:C --+R is said to be regular on C if h(t) =f(x +tz)

is regular on T(x,z) for all x C C, z Z.

The function f appearing in Example 3 is not regular on R.
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Proposition 3. Let f be rgl on C. Then f is seudoconvex

on C if and only if for every x C C, z C Z and every compact

interval I '- T(x,z) there exists a number w(T) such that

h(t) = f(x + tz) is W(I)-convex on I.

Proof. The sufficiency part has been proven in Proposition 2. To

prove necessity, let x C C, z C Z and consider h(t) f(x + tz)

for t C I. From Proposition 1 we have that

h" (t) + p (x + tz,z) [h' t)] 2 >0 (2.7)

for t E I, where

0 if h'(t) 0

p (x + tz,z) ht(2.8)

[h' (t)] 2  
if h' (t) 0

For every t C. I such that h'(E) / 0 there exists a neighborhood

N(t) such that h'(t) / O for t C N(T). Thus, Po (x + tz,z) is

bounded there and can be replaced by some P(t) in N(t) without

violating (2.7).

Every t J I such that h' (t) = 0 is a local minimum, because

h is pcx. Since h is regular, h" (t) > 0 for every t in some

neighborhood N(). It follows that po(x + tz,z) can be replaced

by -(Z) = 0 in N(f) without violating (2.7). Since I is

bSie i



compact, a finite number of neighborhoods N(ti ) associated with

t S I will cover I. Let -(I) = sup '(t i ) Then we have

h"(t) + (,,(I) [h'(t)]2 > 0 (2.9)

for every t I.

As we have already seen, there are pcx functions for which

r0 (x) SuP(p0 (x, Z) z C Z) (2.10)

is not necessarily finite. In the following we consider functions for

which rO(x) is finite for every x C C. The next result follows then

from Proposition 2.

Proposition 4. If there exists a continuous function r:C -4 R such

that H(x;r(x)) is positive semidefinite, then f is pseudoconvex on C.

It is interesting to relate the preceding results to functions

which are convex transformable, that is, they can be transformed into

convex functions by a monotone transformation. The family of G-convex

functions was introduced and studied in [5]. A function f:C -*R is

called G-convex if there exists a twice continuously differentiable

function G:D - R, G'(y) > 0, such that Gf:C --R is convex on C,

where D C R contains the range of f. We have then

2.0



P osition 5 (51. The function f:C -)R is G-convex on C if and

only if there exists a twice continuously differentiable function

G:D -- R, G' (y) > 0 such that

f(x) + G"(f (x)) \/f(x) Vf(x)T (2.11)
G' (f(x))

is positive semidefinite for all x G C.

It immediately follows from Proposition 5 that G-convex functions

satisfy the conditions of Proposition 4.

We introduce now the following notation:

T = family of G-convex functions on C.

H = family of functions for which a positive semidefinite extended

Hessian H(x;r(x)) exists at every x I C.

Hc = subfamily of H, with a continuous r on C.

P = family of pcx functions on C.

In view of Propositions 4 and 5 we have

T , H c P . (2.12)C

Examples 1 and 5 illustrate the fact that h P. The following

example shows that T / H, thus generally the inclusions in (2.12)

are strict.
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Example 4. Let C C R2 be an open convex set contained in

M (x:-[- (x9)3]I /2 < x2 < - (xl)3]l/2)

The function

f(x) = (X )3 + (x212

is pcx on C [23,26]. Moreover, f E H with
c

ro(x) = R (X ) + (x2) 1

Now assume that there exists a point x on the boundary of C which

is also on the boundary of M, i.e. (Xl) + (x2)2 0. Then rO(x)

becomes arbitrarily large approaching from within C. If f were

convex transformable, then H(x;r(x)) would be positive semidefinite

for some r(x) which is constant, and therefore finite, on (x C:f(x)=f(x))

as can be seen from (2.11). However, rO(x) is not finite there.

Therefore, f V T. II

We may mention here that for quadratic functions the families

T, Hc and P are equivalent, that is, T H = P f271.

The following result characterizes T as a subset of H .c

Proposition 6. f T if and only if ft Hc and

c(y) = sup[r(x):f(x) y, x C C)

is finite for all y in the range of f.
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Proof. If f G T, then, by Proposition 5, f C Hc with

r(x) = G"(f(x))/G'(f(x)). Hence for all y in the range of f,

cU(y) is finite.

Conversely, let f C H and suppose 0(y) is finite for allC
y in the range of f. Since f and r are continuous, so is ct.

The differential equation

has a solution

G(y) = f exp (f Xy()dT) d

with G'(y) > 0. Hence f C T.

From Proposition 6 we immediately obtain

Proposition 7. If f E H. and

f3(y) = supfr(x):f(x) < y, x C C!

is finite for all y in the range of f, then f C T.

The converse of the last proposition is not true, as can be

seen from

13



Example 5. Let

C {xC R >:x >0, x2 >0)

and let
()3/2

f(x) 
(x
x 2

For x E C, rO(x) = l/f(x) is the smallest number such that H(x;r(x))

is positive semidefinite. Then P0(Y) = supfl/f(x):f(x) < y, x C)) +

On the other hand, taking G(y) = y2 we can see that (f(x))2 is

convex on C [241.

From Proposition 7 we obtain

Proposition 8. If f C H and the level sets
C

S(fy) ( lx C C, f(x) < y1

are compact for every y E R, then f E T.

Compactness of the level sets is, however, not necessary for

functions in H to be convex transformable. For example, all nonconvex
c

pcx quadratic functions have unbounded level sets, but they are convex

transformable [26,271.

We conclude this section by presenting some related results on

strictly pcx functions. Here we use the following notation:

1~4



T subfamily of T, where V2Gf(x) is positive definite on C.

Hs s subfamily of H, where H(x;r(x)) is positive definite on C.

HS subfamily of HS, where r is continuous on C.
c
P3  family of strictly pcx functions on C.

Then, from Propositions 4 and 5 we have

Ts 'H s  pS

c

Although we have seen that Hc / H, we now state and prove

Proposition 9. Using the above notation,

Hs = Hs

c

Proof. We have to show that Hs i-H C Let K be a compact set in C
c

and let x C K. Since f C Hs , there exists an E > 0 such that

zTf(x)z >'0 i Z=z Z:IzT-7f(x)f < c). Because of continuity of

*Vf and vtf there exists a neighborhood N(2) of x such that for

" all x C N(x) we have zT 2f(x)z > 0 in Z and IzTf(x)l >E/2 > 0

in Z \Z. Let

r(x) > maxf0,ma~xHzTV2f(x)z/(zTVf(x))2 :x N(x), z Z .

The right-hand side is finite,and we see that z TH(x;r(x))z > 0 for

all z K Z, x C N(X). Since K is compact, there exists a finite

15



number of neighborhoods N(xk), xk E K, that cover K. Thus H(x;r(K))

is positive definite in K for r(K) = sup(r(xk)).

Now let [Ki) be a sequence of compact convex sets in R1

such that K CKi+l, i = 1,2,..., and C = ir K As we saw before,i + i=i i

there exists a number r(Ki) such that H(x;r(Ki)) is pcuitive definite

for all x tE Ki . Since Ki C K1 +l, it can be assumed that- r(K) < +).

Since the Ki are assumed to be compact convex, it follows that a continuous

function r on C can be constructed such that r(x) > r(K,) at

x E K1 and r(x) > r(Ki) at x E Ki\Ki. 1 for i = 2,... [28J.

Since then H(x;r(x)) is positive definite on C, we proved that
S4fE Hs .

c 0

It should be noted that the inclusions Ta c T, Hs C H andc Ic

P5 C P can be strict, as illustrated below.

Example 6. Let f(x, x2 ) in x1 and let C = (x E R 2 :x I >0).

Then fE T, but f sV .Ti

The results of this section can be summarized in the following

schematic representation:
~ H

T =M.H
c

16 6 16
T -1 11c <x H8 um P5

16



The numbers appearing next to the arrows refer to the example numbers

which show that the reverse implications generally do not hold.

Families H and P are not related to each other by inclusion, as

can be seen from Examples I and 2.

3. Pseudoconvexity in terms of bordered determinants.

In this section we shall deal with determinants of the bordered

Hessian of f, given by

7"0 -,7f(X) T
Bf(x) = Vf(x) V2f(x)

as related to pseudoconvexity. Let Qk be the set consisting of monotone

increasing sequences of k numbers from (1,...,n), that is

Q k =  Y = ( il ' " ik ) ' 1 <_ < ' ' '. . < ' k  <_ n )

Let H denote the principal minor of order k of the n x n Hessian
tv y~k

4 12f, formed by the i ,..., ik rows and columns of 72f. The leading

principal minors of .Af are denoted by Hk, k 1, ... , n. We associate

with Bf and H ,k the principal minor

17



0 7 x . . .

Dk = det" "

f 2f ... 2 f3. k i 1 1ik

Similarly, Dk  will denote the leading principal minor of order k+l

of B f. We shall refer to D T,k  and D k  as bordered determinants,.-£

Characterizations of the families of functions introduced in the

previous section in terms of bordered determinants will be presented now.

First we need

r~k

Proposition 10. Let A be a real k x k matrix an_d let b G Rk

Then ran real n1lmber ro n we have

det(a + rbb T )  det A - r det(31
A

Proof. Suppose that r 0 . Then, for Schur's formula (14] we obtain

1 b k

de r det(A + rbbT  (3.2)

b A

It is easy to show that

18



(b5) 00

trr

We can state and prove now

Proposition 11. A function f belongs to the famiily H if and onyL

H (x) - r(x) D (x) > 0 (3.4)

b, A

for all x E C and y E qi k

Proof. The family H consists of all functions f for which a positive

semidefinite H(x;r(x)) exists at every x E C. Since a square matrix

is positive semidefinite if and only if all its principal minors are

nonnegative, the proof follows from Proposition 10.0

We also have

Proposition 12. A function f belongs to H if and o nly if Dk(X) < 0

andif D (x) =0 then H (x) > 0 for all xEC and 

Proof. Replace r(x) in (3.4) by any arbitrarily large i(x). 0

19



A square matrix is positive definite if and only if all its

leading principal minors are positive. Consequently, we ha re the

following analogous result to Proposition 12.

Proposition 13. A function f belongs to H5  if and only if Dk(x) < 0

and if Dk(x) = 0, then Hk(x) > 0 for all x E C and k = 1,...,n.

We have seen in the previous section that H (and not H)C

consists of pcx functions only. Let us state and prove now a sufficient

condition in terms of bordered determinants for a function to belong to

Hc, and thus to be pcx.

Proposition 14. Suppose that D (x) < 0 for all x E C and y E Qk,

k = 1,...,n, and if D Yk(X) = 0, then H k(x ) > 0 for all x in

some neighborhood N (x) of x. Then f C Hc, and thus f is seudo-

convex on C.

Proof. By Proposition 12, we only have to show that a continuous r can

be found such that H(x;r(x)) is positive semidefinite. As shown in

the proof of Proposition 9, it suffices to prove that for all compact

sets K in C there exists a number r(K) such that H(x;r(K)) is

positive semidefinite for x K. Let, therefore, K __C be compact

and let -K.

If Dk(x) < 0, then D k(x) < 0 in some neighborhood Nk(x)-

Define

r =sup((H (k(x-1)/D (x):x C N (i)l
Then H (x) - r ( ) D (x) > 1 > 0 for x C N (i).

20



If D () 0 , then HT, (x) > 0 in some neighborhood N Y()

by assumption. Thus

Hr, k(x) - r(X) Dy, (x) > Hr, k (x) > 0

for x 1N k(R) , where rk(i) =

Let N(i) = n N y,k() and r(x) = max r k(X). Thus for each E C K
",k -y,k 

there exists a neighborhood N(2) and a number r(i) such that

H, (x ) - r() D ,k(x) > 0 for all x E N(x) and r C Qk' k = 1;...,n.

In view of Proposition 11, H(x;r(x)) is positive semidefinite in N(i).

Since the compact set K is covered by finitely many neighborhoods

N(xk ) of points x k E K, there exists a number r(K) such that

H(x;r(K)) is positive semidefinite on K. 0

Ferland [10,121, extending previous results of Arrow and Enthoven

[1], has considered the following families of functions:

D. family of functions for which Dk()< 0 for all x C C and

D< = family of functions for which Dk(x ) < 0 .Or all x C C andk = 1,.. .,n.

Using this notation, Ferland proved that 1

D< C P D (5.D)

Let us introduce now two additional families.

21



Ds family of functions for which Dk(x) < 0, and if Dk(x) 0,

then Hk(X) > 0 for all x C C and k = 1,...,n.

D family of functions for which Dy k(x) < 0 for all x C C and

k = l,...,n, and if D (x) = 0, then H (x) > 0 forC k k yk -

all x in some neighborhood N (x) of R.

In Proposition 13 we proved that Ds = H s and HS D. Hence, we have

Proposition 15.

D< lID = Hs iD D< . (3.6)

Note that the first inequality in (3.5), that is, D< -P follows from

(3.6), since by Proposition 14, D I P. Also, since Hs c Ps (see

Section 2), the first inclusion in (3.6) shows that D< covers only

strictly pcx functions. Let us show now that the inclusion D< - Ds

can be strict, that is, there are strictly pcx functions in d' which

do not belong to D<.

Example 7. Let f(x1 ,x2 ) in[(xl) 2 + (x 2 ] and
2

C x C R2 :x 2 > 0). For this function
22

(X) - l)2  2
Ii [ + (x2)  I

If Dl(X) =0, then

'12t



H 2(Xl)2 + 2(x2)2 21 ( i)2 )2]2 -2

2 + (X2) 2 (2)

which is positive. Furthermore,

D2(x )  < .
[(X)2 + (x2)2]2

Hence, f C Ds but f V D.

Since the inclusion DS -D is strict as we have shown in

Example 6, Proposition 14 presents a stronger condition than that

derived from Proposition 13; Proposition 14 also covers pcx

functions which are not strictly pcx.

Proposition 13 and Proposition 14 yield the strongest sufficient

conditions in terms of bordered determinants for strict pseudoconvexity

and pseudoconvexity, respectively, known so far. From Proposition 12

wr can see that H - D. and by (5.5) we have P D,. Both inclusions

are strict as can be seen below.

Example 8 [i0]. Let f(x1,x2) =-(x I + x 2 ) and C = R. Then

f E D<, but f V P and f V H, since along the line x1 +x 2 =0 the

extended Hessian of f is not positive semidefinite.

We now complete the schematic representation of the relations

between the various families mentioned above as follows:



T ~H
T __4 >H 1, >p

C

6 D 6

6T s 4 D s <=i, Hs < H s 3 pS
/ c

D<

The families T s and D< are not related to each other as can be seen

from Examples 4 and 7. We could not find an example showing that the

inclusior D c H is strict. Finally we may remark that the sign test

of the leading principal minors of an extended or bordered Hessian can

be conveniently performed by a procedure suggested by Cottle [71.

4. Pseudoconvexity of quadratic functions.

In this section we focus attention on quadratic functions of

the form

q(x) = xTQx + aTx (4.1)

on an open convex set C .' Rn. Characterizations of pcx quadratic

functions were derived in [8-11, 1.8, 19, Cb, 25-271. In F23,2b] it was

shown that pex quadratic functions are G-convex. Using this result,

a characterization in terms of H(x;r(x)) was presented in (27],

generalizing a result in [21]. Restricting the families introduced in

the previous sections to families of quadratic functions it was shown ri

[27] that

'~=



T H H :P and TS : HS (.1)
C C

Let us characterize now pcx quadratic functions in terms of bordered

determinants. We have

Proposition ILe. A quadratic function q is pseudoconvex on C if and

only if D) (x) < O, and if D (x) 0, then Hk(x ) > 0 for all

x C and V k = 1,...,n.

The proof of this proposition follows from the fact that H = P

for quadratic functions and from Proposition 12. Since the H axe

constant for q, Proposition 1( shows that D = P.

For strictly pcx functions we have seen in Proposition 13 that

D s  H s . Since H s 
- PS for quadratic functions, we have

Propositi-n 17. A quadratic function q is strictly pseudoconvex on C

if and only if Dk(X) < 0, and if D (x) 0 0, then Hk(x) > 0 for all

x - C and k l,...,n.

The relation.;hip between fatnilies of pcx quadratic functions

can be represented by the following schematic diagram:

T i- H H 1) )

Uc

T) T" I I



The next two examples respectively demonstrate that the inclusions

D D and D< Ts can be strict.

Example 9. Let q(xlx - -(x and C -{x I R":x > 0).

It is easy to verify that q D. But Hk(X - for all x ' C and

k 1,2. Hence q D Ds . II

Example 10. Let q(x,x2l (X) I x,- and C = R'- .

Dl(x) =-4(xl, D2 (x) -2 < 0. If DI(x) = 0, then Hl(X) = 2 > 0.

Hence q V D< and q 1L-. D'.

In conclusion, the families D and Ds respectively characterize

pcx and strictly pcx quadratic functions in terms of bordered determinants.
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